Dipartimento di Statistica e Metodi Quantitativi Università Bicocca marco.fattore@unimib.it filomena.maggino@unifi.it alberto.arcagni@unimib.it

Measuring multidimensional polarization with ordinal data

Marco Fattore, Filomena Maggino, Alberto Arcagni

Firenze 30 luglio 2013

The issue(s)

Social perspective

- The «disappearing of the middle-class» and the transformation of the structure of our societies, with possible effects on the properly functioning of our democracies;
- Polarization is not confined to income, but involves several aspects of societal life;
- To realize the existence of complex socio-economic dynamics and to overcome «flat» policies in favour of different actions for different needs.

Statistical perspective

- Dealing with ordinal variables: a problematic issue in synthetic indexes computation;
- No literature (but a few papers) on measuring ordinal multidimensional polarization;
- Relevance of producing «faithful» indicators to answer decision-makers' needs.

Goal of the presentation

- To suggest a new way to address the problem of measuring polarization in a multidimensional ordinal setting;
- To provide a first simple application on real data.

A poset

Linear extensions

A fundamental relationship

Driving example: data

Three binary variables (1 - good; 0 – bad) pertaining to well-being in Italy, from Indagine Multiscopo* 2010:

- 1. Subjective health status;
- 2. Satisfaction for one's own economic status;
- 3. Satisfaction for quality of leisure time.

Profile	Count
111	14207
110	4255
101	1291
011	9282
100	807
010	5876
001	2400
000	2847

*Data are available within a research protocol between Istat and University of Florence: "Quality of Life in Italy: assessment through data from Multipurpose Survey about Families Aspects of daily life".

Poset on 3 binary variables Hasse diagram

Approaches to multidimensional polarization measurement

Classical

Poset

Unidimensional polarization axioms directly extended to the multidimensional case (often with cumbersome results)

-> Multidimensional polarization measure computed as functions (usually means) of unidimensional polarization on single variables. Search directly for axioms to build multidimensional polarization indexes out of unidimensional ones.

Based on combinatoric – algebraic concepts (discrete mathematics)

-> Multidimensional polarization measure computed as functions (usually means) of unidimensional polarization on single linear extensions.

To give an idea (semilattice)

Generating elements

Intersection (meet)

The basic idea

Given a polarization a unidimensional polarization index defined on linear extensions, extend it to the whole semilattice.

Mathematical path to a new axiomatic approach

+ Theory of means by Kolmogorov-Nagumo-de Finetti

Multidimensional polarization measures as means of measures of linear extensions

Multidimensional polarization index with ordinal variables

There are many indexes to measure polarization (or inequality) on ordinal variables.

In this attempt, we have chosen the normalized form of the following

$$I(\ell) = \sum_{i < j}^{8} n_i n_j (j - i)$$

where ℓ is a linear extension, j and i are the ranks and n_i , n_j the number of elements in the profiles ranked i and j respectively.

Distribution of polarization on its 48 linear extensions and average

Polarization (average)

0.72

References

- Berry K. J., Mielke Jr. P. V. (1992), Assessment of variation in ordinal data, Perceptual and motor skills, 74, 63-66.
- 2. Davey B. A., Priestley H. A. (2002), Introduction to lattices and order, CUP.
- Gigliarano C., Mosler K. (2009), Constructing indices of multivariate polarization, J. of Economic Inequal., 7, 435-460.
- 4. Kobus M. (2011), *Multidimensional inequality indices for ordinal data*, Warsaw University, Faculty of Economic Sciences (available at http://coin.wne.uw.edu.pl/mkobus/).
- 5. Maasoumi E. (1999), *The measurement and decomposition of multi-dimensional inequality*, Econometrica, 54, 771-779.
- 6. Tsui K. (1986), Multidimensional inequality and multidimensional generalized entropy measures: An axiomatic derivation, Soc. Choice and Welf., 16, 145-157.